transphorm

Highest Performance, Highest Reliability GaN

Introducing the Powerful, New GaN Solution for USB-C Adapters

Integrates Weltrend Semiconductor's high frequency multi-mode flyback PWM controller with Transphorm's 240 mΩ SuperGaN[®] FET.

Designed to work with USB PD controllers to provide a complete USB PD or other programmable adapter solution.

Improves overall system efficiency, reduces bill of materials (BOM), and quickens development of low-profile adapters.

– 100 W* table Hz, variable (external VDD (LDO)
table Hz, variable (external VDD (LDO)
Hz, variable (external VDD (LDO)
(external VDD (LDO)
equired)
1 QFN 8x8
us modes: BI/O, OVP, DCP, OTP, CSP
62RHSG08 mode PWM Flyback
/ Load: Quasi-resonant Load: Discontinuous uction Mode
1300G4LSG SuperGaN , 240 mΩ FET
table (external pin access)

New SuperGaN[®] SiP

Compact | Cost Effective | Fast Development

65 W Adapter Schematic

About Weltrend Semiconductor Inc.

Founded in 1989 in the "Silicon Valley of Taiwan", the Hsinchu Science Park, Weltrend Semiconductor, Inc. is a leading fabless semiconductor company specializing in the planning, design, testing, application development, and distribution of mixed-signal/digital Integrated Circuit (IC) products in power supplies, motor controls, image processing, and more across multiple applications. The company is currently recognized as the global leader in adapter USB Power Delivery (PD) Controller ICs.

> Click for additional product information. For samples, contact sales@weltrend.com.tw

* > 65 W power output requires PFC

transphorm

65 W USB PD Adapter Reference Design

Weltrend developed a high efficiency single-stage 65 W USB-C PD 3.0 + PPS power adapter reference design. The board pairs the WT7162RHUG24A SuperGaN SiP IC, a WT7131A SR controller, and a WT6633P USB PD controller to present a total, cost-effective solution delivering high performance.

Reference Design Specifications	
Тороlоду	Flyback Quasi-Resonant Mode/Valley- Switching Multi-mode Operation
Peak Efficiency	93.2% @ 90 VAC
Overall Peak Efficiency	93.8%
Power Density	26 W/in ³
Output Voltage Operation	USB-C PD 3.0, PPS 3.3 V - 21 V
Input Voltage	90 VAC – 264 VAC
Input Frequency	47 Hz – 63 Hz
Standby Power	< 50 mW @ 230 VAC
Output Voltage and Current	PPS: 3.3 V – 21 V/3 A 5 V/3 A; 9 V/3 A; 12 V/3 A; 15 V/3 A; 20 V/3.25 A
Dimensions	56 mm x 27 mm x 27 mm

65 W: Efficiency vs. Load Current at (20 V_{out})

65 W: Full Load Efficiency vs. Input V

