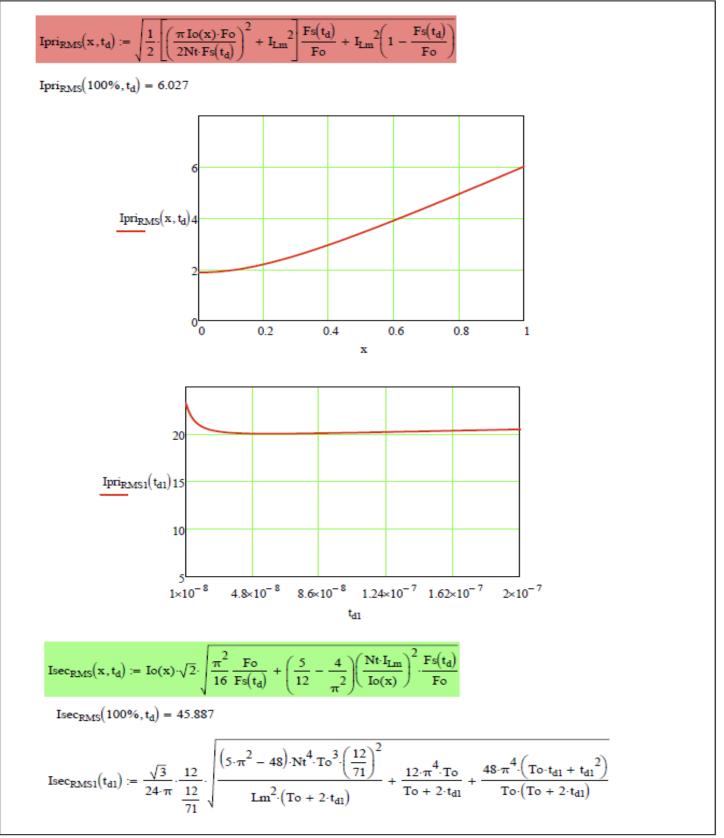
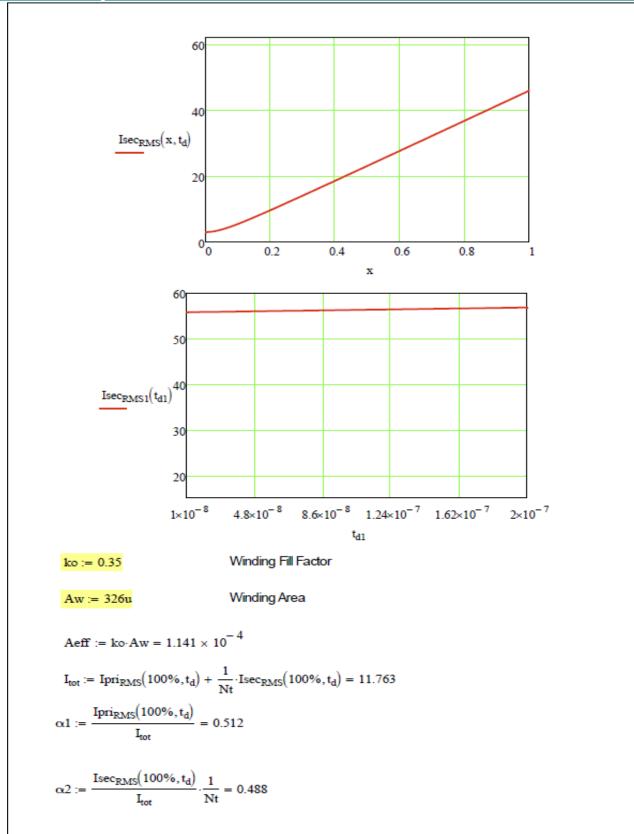

Design Guide



Design Guide


April 01, 2019 dg0010.0 © 2018 Transphorm Inc. Subject to change without notice.

Design Guide

April 01, 2019 dg0010.0

Design Guide

April 01, 2019 dg0010.0

$$\begin{aligned} Aw1 := \frac{a1 \cdot Aeff}{Np} &= 1.462 \times 10^{-6} & AWG 38, Liz wire 8.01^{+}10^{-9}, 230 \\ strands, choose 200 strands \\ Aw2 := \frac{a2 \cdot Aeff}{Ns} &= 1.113 \times 10^{-5} & AWG 38, Liz wire 8.01^{+}10^{-9}, 1760 \\ strands, choose 200 strands \\ \end{aligned}$$

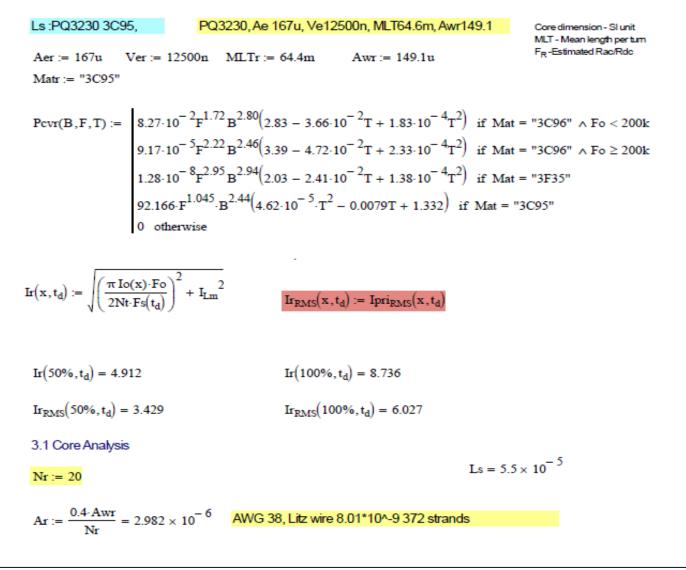
$$\begin{aligned} Pirmary Winding: \\ Liz winding 0, 101 mm (AWG 38) - 400 strand \\ dw_pri &= 0.1m & mw_pri = 200 \\ Rdepri &= Np - \frac{\rho \cdot MLT}{mw_pri(0.25\pi dw_pri^2)} \\ Rdepri &= 0.048 \\ F_{Rpri} := 1.1 & Liz wire has little eddy current loss. \\ Peu_pri(x, t_q) := F_{Rpri} Rdepri Ipri_{RAG}(x, t_q)^2 \\ Ipri_{RAG}(50\%, t_q) = 0.621 & Peu_pri(100\%, t_q) = 6.027 \\ Peu_pri(3\%, t_q) = 0.621 & Peu_pri(100\%, t_q) = 1.919 \\ Secondary Winding: \\ Liz winding 0, 101 mm (AWG 38) - 1000 strand, \\ adual its copper foil \\ dw_sec := 0.1m & mw_sec := 1000 \\ Rdesec := \frac{Ns}{1} \frac{\rho \cdot MLT}{mw_sec(0.25\pi dw_sec^2)} \\ Rdesec := 1.201 \times 10^{-3} \\ F_{Raec} := 1.1 & Liz wire has little eddy current loss. \\ Peu_sec(50\%, t_q) = 23.094 & Isec_{RAG}(100\%, t_q) = 45.887 \\ Peu_sec(50\%, t_q) = 0.704 & Peu_sec(100\%, t_q) = 2.781 \end{aligned}$$

Design Guide

transphorm

 $Pcu_T(x, t_d) := Pcu_pri(x, t_d) + Pcu_sec(x, t_d)$

Total coppper loss


 $Pcu_T(50\%, t_d) = 1.325$ $Pcu_T(100\%, t_d) = 4.7$

2.3 Total TransFsrmer Loss

 $P_{T}\!\!\left(x,t_{d}\right) \coloneqq Pcore_T\!\left(t_{d}\right) + Pcu_T\!\left(x,t_{d}\right)$

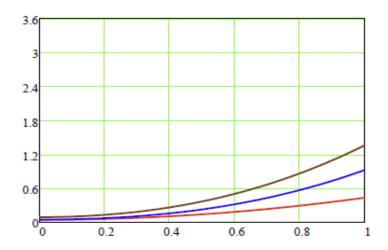
 $P_T(50\%, t_d) = 3.222$ $P_T(100\%, t_d) = 6.596$

3. Resonant Inductor Design and Analysis

© 2018 Transphorm Inc. Subject to change without notice.

Design Guide

$Bmr\!\left(x,t_{d}\right) := \frac{(Ls-12u) \cdot Ir\!\left(x,t_{d}\right)}{Nr \cdot Ae}$		$Ir(1,t_d) = 8.736$	Assume Lk=2.2uH			
$Pcore_Ls(x, t_d) := Pcv(Bmr(x, t_d), F$	$Fs(t_d), 100) \cdot Ve$					
$Pcore_Ls1(x,t_d) := Pcv(Bmr(x,t_d),$	Fo, 100) $\cdot Ve \cdot \frac{Fs(t_d)}{Fo}$	$Fo = 1.001 \times 10^5$	$Fs(t_d) = 9.422 \times 10^4$			
$\mathbf{Bmr}(50\%, t_d) = 0.056$	$Bmr(100\%, t_d) = 0$	0.1				
$Pcore_Ls(50\%, t_d) = 0.226$	Pcore_Ls(100%, t	d) = 0.922				
$Pcore_Ls1(50\%, t_d) = 0.227$	Pcore_Ls1(100%,	$(t_d) = 0.924$				
3.2 Winding Analysis						
dw_Ls := 0.1m n	w_Ls := 320	$F_{R_{Ls}} := 1.2$				
Porosity	η:= 1	solid cop	per - unit porosity			
$\delta := \frac{75}{\sqrt{Fs(t_d)}} m$	$\delta = 2.443 \times 10^{-4}$					
Specific functions for winding loss analysis [Fundamentals of Power Electronics, R. Erickson, pp.518]						
$G1(\phi) := \frac{\sinh(2\phi) + \sin(2\phi)}{\cosh(2\phi) - \cos(2\phi)} \qquad \qquad G2(\phi) := \frac{\sinh(\phi)\cos(\phi) + \cosh(\phi) \cdot \sin(\phi)}{\cosh(2\phi) - \cos(2\phi)}$						
$Fr(\phi, M) := \phi \left[G1(\phi) + \frac{2}{3}(M^2 - 1)\right]$	$\left(G1(\phi) - 2G2(\phi)\right)$		φ=h/δ, effective skin depth ratio			
Effective skin depth ratio	$\varphi := \sqrt{\eta} \frac{dw_L}{\delta}$	<u>s</u> ¢	0 = 0.409			
$F_{R_Lr} := Fr(\phi, 2)$ F	$R_{Lr} = 1.012$					
$Rdc_Ls := Nr \cdot \frac{\rho \cdot MLTr}{nw_Ls \frac{\pi}{4} \cdot dw_Ls^2}$	Rdc_Ls = 0.01	2				
$Pcu_Ls(x,t_d) := F_{R_Lr} \cdot Rdc_Ls \cdot Ir_{RMS}(x,t_d)^2$						
$Pcu_Ls(50\%, t_d) = 0.14$	$Pcu_Ls(100\%, t_d) = 0$	0.433				


April 01, 2019 dg0010.0

Design Guide

3.3 Total Inductor Loss

$$P_{Ls}(x, t_d) := Pcore_Ls1(x, t_d) + Pcu_Ls(x, t_d)$$

$$P_{Ls}(50\%, t_d) = 0.367$$
 $P_{Ls}(100\%, t_d) = 1.357$

Design Guide

3

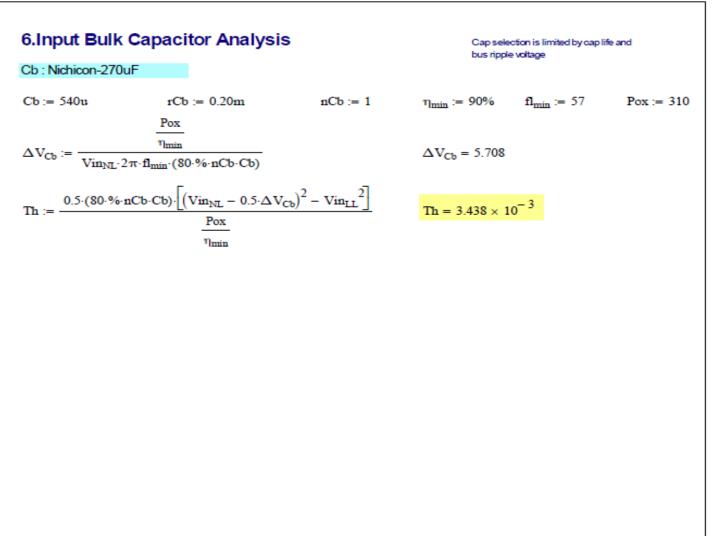
4. Resonant Capacitor Analysis

$$\begin{split} \text{DI} &:= \text{"COG"} \\ \text{DF}_{-Cs1} &:= \begin{bmatrix} 0.0015 & \text{if DI} = \text{"COG"} \\ 0.0250 & \text{if DI} = \text{"X7R"} \\ 0.0020 & \text{if DI} = \text{"YP"} \\ 0 & \text{otherwise} \\ \\ \text{Cs1} &:= \text{Cs} \\ \text{Cs1} &:= \text{Cs} \\ \text{DF}_{-Cs1} = 1.5 \times 10^{-3} \\ \text{rCs1}(t_d) &:= \frac{\text{DF}_{-Cs1}}{2\pi \text{Fs}(t_d) \text{Cs1}} \\ \text{nCs1x} &:= \frac{\text{Cs}}{\text{Cs1}} \\ \text{nCs1x} &:= \frac{\text{Cs}}{\text{Cs1}} \\ \text{nCs1x} &:= \frac{1}{2\pi \text{Fs}(t_d) \text{Cs1}} \\ \text{mCs1x} &:= \frac{1}{2\pi \text{Fs}(t_d) \text{Cs1}} \\ \text{M}_{-S}(t_d) &:= \sqrt{\left(\frac{\pi \text{Io}(x) \cdot \text{Fo}}{\text{Nt} \text{Fs}(t_d)}\right)^2 + \text{I}_{Lm}^2} \\ \\ \text{M}_{Cs_{L}max}(x, t_d) &:= \sqrt{\left(\frac{\pi \text{Io}(x) \cdot \text{Fo}}{\text{Nt} \text{Fs}(t_d)}\right)^2 + \text{I}_{Lm}^2} \\ \text{M}_{Cs_{L}max}(x, t_d) &:= \frac{1}{\sqrt{2}} \left[\frac{\text{I}_{Lm}}{4 \cdot \text{Cs}} \cdot \left(\frac{1}{\text{Fs}(t_d)} - \frac{1}{\text{Fo}} \right) + \sqrt{\frac{\left(\frac{\pi \text{Io}(x) \cdot \text{Fo}}{\text{Nt} \text{Fs}(t_d)}\right)^2 + \text{I}_{Lm}^2}}{2 \cdot \pi \cdot \text{Fo} \cdot \text{Cs}} \right] \\ \text{P}_{Cs}(x, t_d) &:= \frac{1}{\sqrt{2}} \left[\frac{\text{I}_{Lm}}{4 \cdot \text{Cs}} \cdot \left(\frac{1}{\text{Fs}(t_d)} - \frac{1}{\text{Fo}} \right) + \sqrt{\frac{\left(\frac{\pi \text{Io}(x) \cdot \text{Fo}}{\text{Nt} \cdot \text{Fs}(t_d)}\right)^2 + \text{I}_{Lm}^2}}{2 \cdot \pi \cdot \text{Fo} \cdot \text{Cs}} \right] \\ \text{P}_{Cs}(x, t_d) &:= \frac{\text{rCs1}(t_d)}{\text{nCs1}} \cdot \text{Ir}_{RMS}(x, t_d)^2 \\ \text{V}_{Cs_{Lmax}}(100\%, t_d) &= 592.537 \\ \text{V}_{Cs_{Lmax}}(100\%, t_d) &= 0.081 \\ \text{P}_{Cs}(100\%, t_d) &= 0.25 \\ \end{array}$$

5. Output Capacitor Analysis

$$Co := 330u$$
 $rCo := 42 \times 10^{-3}$ $nCo := 15$

$$\Delta V_{C_Co}(x, t_d) := \frac{1}{nCo \cdot Co} \frac{1}{2} \cdot Io(x) \cdot \left(\frac{\pi}{2} - 1\right) \cdot \frac{To}{2} \qquad \Delta V_{C_rCo}(x, t_d) := \frac{rCo}{nCo} \cdot \left(\frac{\pi}{2} - 1\right) Io(x)$$
$$\Delta V_{Co}(x, t_d) := \sqrt{\Delta V_{C_Co}(x, t_d)^2 + \Delta V_{C_rCo}(x, t_d)^2}$$

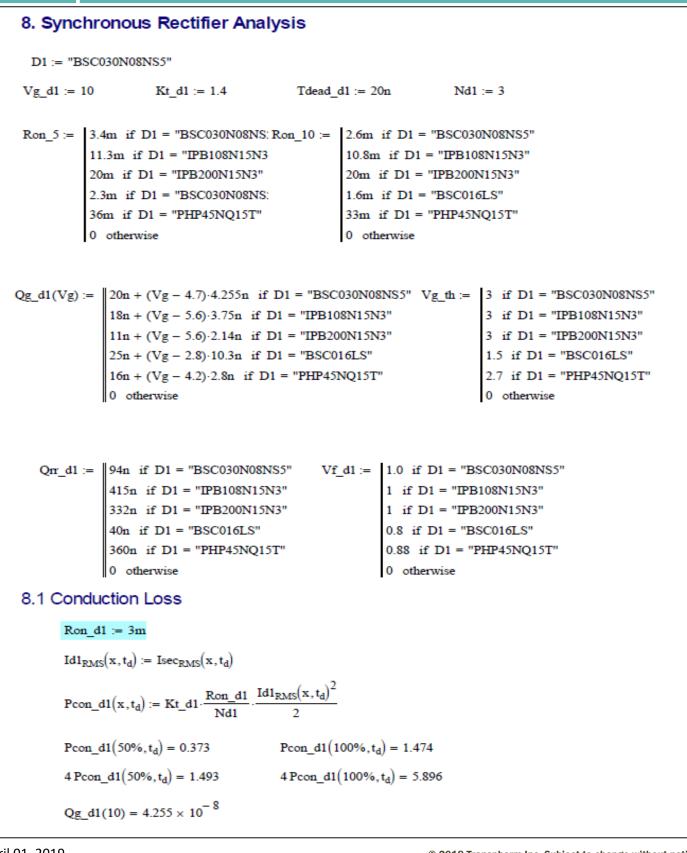

$$I_{CoRMS}(x, t_d) := Io(x) \sqrt{\frac{\pi^2}{8} \cdot \frac{Fo}{Fs(t_d)} + \left(\frac{5}{6} - \frac{8}{\pi^2}\right) \cdot \left(\frac{Nt \cdot I_{Lm}}{Io(x)}\right)^2 \cdot \frac{Fs(t_d)}{Fo} - 1}$$

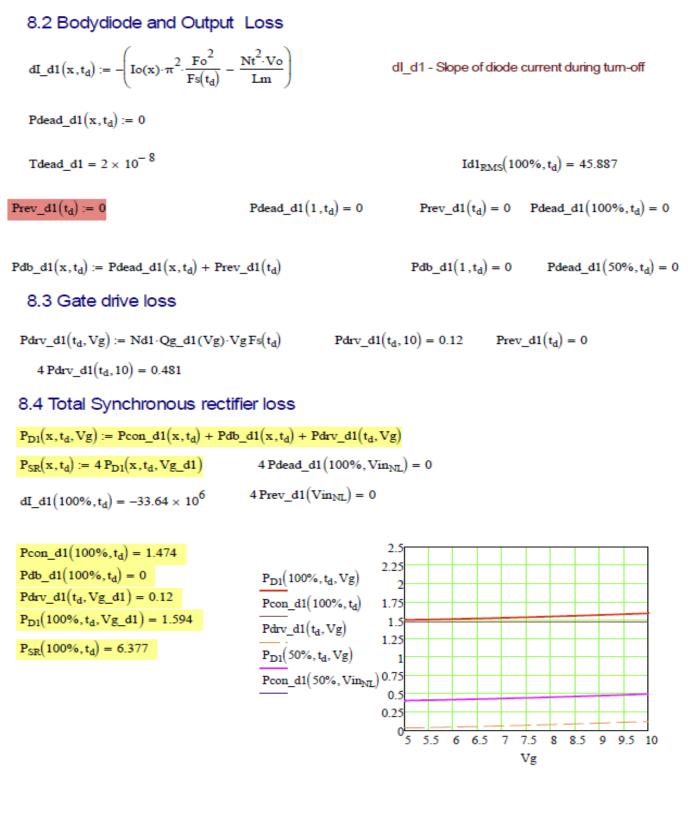
$$P_{Co}(x, t_d) := \frac{8 \cdot rCo}{nCo} \cdot I_{CoRMS}(x, t_d)^2$$

 $\Delta V_{Co}(100\%,t_d) = 0.065$

 $I_{CoRMS}(100\%, t_d) = 22.486$

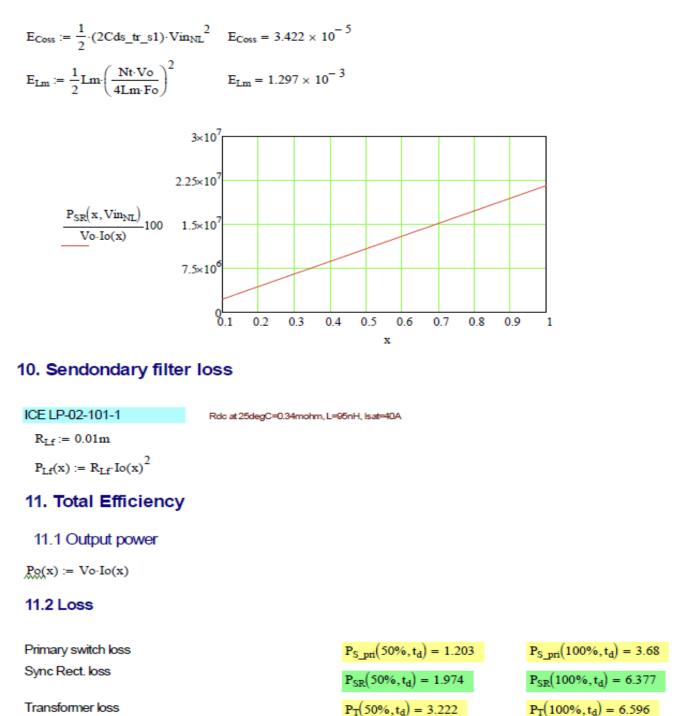
 $P_{Co}(100\%, t_d) = 11.326$




Design Guide

7. Prima	ary Switch Analysis		Kt - Temp coeff at 120deg C Cds_s1 - Effective Coss (time related)		
Vg_s1 := 12	2 Ig_s1on := 1 I	g_s1off := 0.85	Kt_s1 := 1.4		
S1 := "TPH	3212"		Tentative, to check actual Coss(Tr)		
Ron_s1 := 0.074 if S1 = "IPP60R074C6' Qg_s1 :		= 138n if S1 =	"IPP60R074C6"		
	0.25 if S1 = "TPH2002"	6.2n if S1 = "TPH2002"			
	0.199 if S1 = "IPP199"	32n if S1 = "	'IPP199"		
	0.15 if S1 = "TPH3006"	6.2n if S1 =	"TPH3006"		
	0.072 if S1 = "TPH3212"	9n if S1 = "T	ГРН 3212"		
	0.50 if S1 = "GAN40G31"	0.4n if S1 =	"GAN40G31"		
	0.450 if S1 = "STP11NM60N	30n if S1 = "	'STP11NM60ND"		
	0 otherwise	0 otherwise			
Qgs2_s1 :=	17n if S1 = "IPP60R074C6 Qgd_s1 :=	71n if S1 = "II	PP60R074C6"		
	2n if S1 = "TPH2002"	2.2n if S1 = "T	ГРН 2002"		
	8n if S1 = "IPP199"	2.2n if S1 = "T	TPH3006"		
	2.5n if S1 = "TPH3006"	3n if S1 = "TP	PH3212"		
		1.3n if S1 = "GAN40G31"			
		15n if S1 = "S	15n if S1 = "STP11NM60ND"		
	6n if S1 = "STP11NM60N	0 otherwise			
	0 otherwise				
Cds_tr_s1 :=	580p if S1 = "IPP60R074C6"	Cds_25V_s1 :=	300p if S1 = "IPP60R074C6"		
	70p if S1 = "TPH2002"		100p if S1 = "TPH2002"		
	180p if S1 = "IPP199"		180p if S1 = "IPP199"		
	110p if S1 = "TPH3006"		210p if S1 = "TPH3006"		
	225p if S1 = "TPH3212"		225p if S1 = "TPH3212"		
	80p if S1 = "GAN40G31"		80p if S1 = "GAN40G31"		
	130p if S1 = "STP11NM60ND"		200p if S1 = "STP11NM60ND"		
	0 otherwise		0 otherwise		
7 1 Corr	duction loss				
7.1 0010					
$Is1_{RMS}(x,t_{c})$	$\mathbf{i} := \frac{1}{\sqrt{2}} \cdot \sqrt{\frac{1}{2} \cdot \left[\left(\frac{\pi \cdot \mathrm{Io}(\mathbf{x}) \cdot \mathrm{Fo}}{2\mathrm{Nt} \cdot \mathrm{Fs}(\mathrm{t}_{\mathrm{d}})} \right)^2 + \mathrm{I}_{\mathrm{Lm}}^2 \right] \cdot \frac{\mathrm{Fs}}{1}}$	s(t _d) Fo	$RMS(1, t_d) = 4.238$		
Pcon_s1(x,	t_d) := Kt_s1·Ron_s1·Is1_{RMS}(x, t_d)^2		Kt_s1 = 1.4		

April 01, 2019 dg0010.0



Design Guide

9. ZVS analysis

Transformer loss

Resonant Inductor loss

Resonant capacitor loss

April 01, 2019 dg0010.0

© 2018 Transphorm Inc. Subject to change without notice.

 $P_{Ls}(100\%, t_d) = 1.357$

 $P_{Cs}(100\%, t_d) = 0.25$

 $P_{Ls}(50\%, t_d) = 0.367$

 $P_{Cs}(50\%, t_d) = 0.081$

Design Guide

Output Capacitor loss		$P_{Co}(50\%, t_d) = 2.987$	$P_{Co}(100\%, t_d) = 11.326$
Secondary filter loss		$P_{Lf}(50\%) = 4 \times 10^{-3}$	$P_{Lf}(100\%) = 0.016$
PCB Trace loss	$Ppcb(x) := 1x^2$	P pcb(50%) = 0.25	Ppcb(100%) = 1
Bias Power & Cooling fan	Pbias := 0.8		
Cooling fan	Pfan(x) := 1x	Pfan(50%) = 0.5 Pfan(100%) =	1 Use 40x40x15mm Fan

Total loss

$$\begin{split} P_{loss_power}(x,t_d) &:= P_T(x,t_d) + P_{Cs}(x,t_d) + P_{Ls}(x,t_d) + P_{Co}(x,t_d) + P_{S_pri}(x,t_d) + P_{SR}(x,t_d) + P_{Lf}(x) + Ppcb(x) \\ P_{Loss}(x,t_d) &:= P_{loss_power}(x,t_d) + (Pbias + Pfan(x)) \\ P_{loss_power}(50\%,t_d) &= 10.088 \qquad P_{loss_power}(100\%,t_d) = 30.602 \\ P_{Loss}(50\%,t_d) &= 11.388 \qquad P_{Loss}(100\%,t_d) = 32.402 \\ 11.3 \ \text{Efficiency} \\ \end{split}$$

$$\begin{split} & & & & & \\ & & & & \\ & &$$

0.91<mark>니</mark> 0

0.1

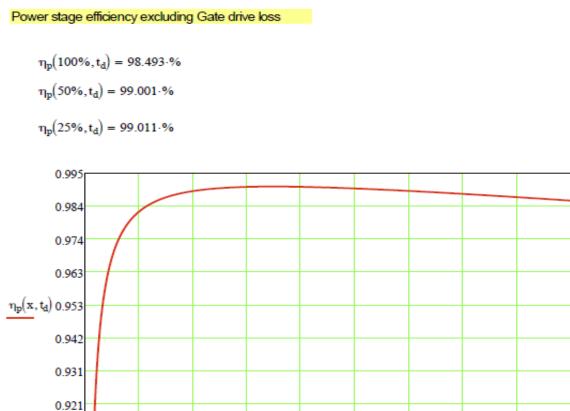
0.2

0.3

0.4

0.5

х


0.6

0.7

0.8

0.9

1

